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We explore the structure of a dipole-type vacuum field of a slowly rotatingmagnetic star near the horizon of
a supermassive black hole, where the structure of field lines becomes highly distorted by effects of strong
gravity. Such a situationmay occur near a neutron star in the final stages of a plunging trajectory into a galactic
center. We solve Maxwell’s equations in the Rindler approximation for the rotating conducting source of
dipolarmagnetic field arbitrarily inclinedwith respect to the axis of rotation. For the fixed inclination anglewe
calculate the field including the radiative terms while in the general case we discuss the electromagnetic field
considering the near-field terms only. In the latter case we investigate the emergence of magnetic null points
within thevacuummagnetosphere.Null points becomehighly relevant in the presence of astrophysical plasma
where they are connected with processes of magnetic reconnection and mass ejection.
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I. INTRODUCTION

Neutral points of the magnetic field are special locations
where the magnetic intensity vanishes and the magnetic
lines of force are bent around to create a critical (null) point.
These magnetic nulls are an essential ingredient for the
emergence of reconnection in magnetized plasmas. In
classical (nonrelativistic) magnetohydrodynamics a com-
plicated motion of the medium together with frozen-in
magnetic lines is necessary. In strong gravity, however,
even electro-vacuum magnetic lines can become entangled
and form null points. They reconnect once a conducting
plasma is injected in the system or electron-positron pairs
start to emerge. We study if the conditions for such
magnetic nulls are met when a magnetized star, represented
by a dipole, rotates and moves rapidly near the horizon of a
supermassive black hole.
In general relativity, the lines of force of an electromag-

netic field are influenced by the gravitational field. Vice
versa, the electromagnetic field stands as a source in
coupled Einstein-Maxwell equations for the gravitational
field and contributes to the spacetime curvature. For
astrophysical applications, however, a limit of weak
electromagnetic field is adequate to describe processes
near supermassive black holes (SMBH), such as the motion
of magnetic stars and the structure of magnetized accretion
disks. Even the most intense magnetic field of a magnetar
can be treated quite accurately within the test field approach

[1]. Nonetheless, the influence of the black hole strong
gravity on the magnetic field lines is important and it has to
be taken into account; in particular, the dipolar structure of
a magnetized stellar body becomes highly distorted due to
the curved spacetime and fast motion.
Previously, the effects of relativistic frame-dragging by

which a rotating black hole acts on themagnetic lines of force
within and in the immediate vicinity of its ergosphere were
studied in [2,3]. While a number of simplifying assumptions
have been imposed, namely, the case of a weak (test)
magnetic field on the fixed (curved) background of a Kerr
metric was analyzed, the authors could identify the main
aspects leading to the creation ofmagnetic null points and the
emergence of separatrices that mark the antiparallel lines of
force within the electrovacuum spacetime. These crucial
features are (i) rapid rotation of theblack hole (spin parameter
jaj → 1 in dimensionless geometric units); (ii) translatory
boost of the black hole (linear motion vt → 1); and (iii) non-
zero inclination of the asymptotic direction of the magnetic
fieldwith respect to the black hole rotation axis (oblique field
with an off-axis component B⊥ ≠ 0).
We consider magnetic fields that are organized on large

scales, i.e., the length scales exceeding the radius of the event
horizon, r≳ Rþ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
(measured in the units of a

gravitational radius, Rg¼GM=c2∼1.5×105M•=M⊙ cm).
An asymptotically homogeneous magnetic field in orienta-
tion perpendicular to the rotation axis is probably the simplest
nontrivial example of such an ordered field structure.
However, it may not be the most relevant example from
the viewpoint of astrophysical applications; the uniform
magnetic field assumes that the source currents are of external
origin with respect to the black hole and that they flow very
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far in spatial infinity, r ≫ Rg. Strictly speaking this constraint
violates the assumption of a test magnetic field because the
total energy stored in the asymptotically uniform field leads to
the spacetime that does not satisfy the asymptotic flatness;
instead, it resembles the cylindrical universe with the sym-
metry dictated by the field line direction [4–6].
The choice of electrovacuum spacetime imposes limita-

tions on the astrophysical relevance of the adopted approach.
On the other hand, such a solution represents a clean system
and it allows us to reveal the geometrical effects of strong
gravity, which could be otherwise hidden if we attempt to
explore more realistic (complicated) situations. The assump-
tions given above imply that we do not consider the effects of
small-scale turbulent magnetic fields that can develop within
the plasma due to magnetorotational instability [7] and/or
powerful shearing motions [8,9].
Although the black hole frame-dragging twists the lines

of magnetic force to such an extreme extent that X-shaped
critical null points develop by a purely geometrical effect,
these field lines would not be able to reconnect unless some
dissipative plasma fills the regions [10,11]. In fact, it
appears rather inevitable that a black hole magnetosphere
is continuously filled by electron-positron plasma due to
pair creation, or the gaseous material can be brought into
the region by transiting stars and stellar remnants. Purely
vacuum solutions serve as a starting configuration and test
bed that must be inevitably modified by plasma in an
astrophysically realistic environment for instance, when
plasma of a pulsar wind nebula is injected into the SMBH
neighborhood of a galactic core. Turbulent motions can
even enhance the reconnection rate [12] but these effects
are beyond the scope of the present paper.
The emergence of magnetic neutral points appears to be

a generic property that occurs near the ergosphere even if
the magnetic structure happens to be different from the
asymptotically uniform condition, although the shape of
the field lines is progressively departing from this simple
solution as one proceeds to the length scales of order ∼Rg
and more. In particular, we want to examine the conditions
for reconnection of the field lines associated with a
magnetic star on a close trajectory around the black hole.
Such a setup is relevant, e.g., to describe the interaction of a
magnetar in a galactic center nuclear star cluster.
A dipole-type magnetic field is obviously a better

approximation to describe a magnetic star near SMBH,
and we embark on its exploration in the present paper. In
analogy with our previous results [2,3] we expect that the
boost and rotation (of both the supermassive black hole and
the massive magnetic dipole representing the plunging star)
will play an important role on the condition for the
magnetic null points, and we need to explore the case of
a close approach (a plunging trajectory). To simplify the
mathematical formalism while preserving the essential
properties of the physical system we adopt the framework
of Rindler approximation [13–15]. Rindler geometry is a

geometrically simpler representation of the Schwarzschild
black hole in the near-horizon regime. This allows us to
model the (electro)magnetic structure of field lines of a
magnetic star near the black hole horizon as an accelerated
dipole in the Minkowski spacetime.
Rindler spacetime is flat and its metric can be written in

Minkowski coordinates ðT; X; Y; ZÞ:
ds2 ¼ −dT2 þ dX2 þ dY2 þ dZ2 ð1:1Þ

¼ −α2dt2 þ dx2 þ dy2 þ dz2; ð1:2Þ
where that lapse function α connects the Rindler
coordinates ðt; x; y; zÞ and the corresponding approxima-
tion of the spatial part of the Schwarzchild metric near the
horizon [14],

ds2 ¼ ð1 − 2M•=rÞ−1dr2 þ r2dΩ2 ð1:3Þ
≃ g−2h dα2 þ R2

GdΩ2 ð1:4Þ
where gh ≃ α=z denotes the horizon surface gravity
and z is the proper distance from the horizon which
is related to the Schwarzschild radial coordinate r as
z≃4M•ð1−2M•=rÞ1=2. The Rindler approximation thus
neglects the spatial curvature near the horizon and it
approximates the black hole gravity solely by the corre-
sponding gravitational acceleration. Therefore, the Rindler
representation neglects all effects related to the spacetime
curvature; nevertheless, it is a useful tool to capture the
leading effects on the electromagnetic field structure very
close to the horizon, where the acceleration plays the
dominant role.
In this paper we employ the Rindler approximation in

order to analyze the field of a magnetic dipole in various
states of motion close to the Schwarzschild black hole. A
magnetic dipole in Rindler spacetime can simulate a
neutron star or magnetar in the vicinity of a supermassive
black hole. For such a situation the neutron star can be
considered almost pointlike while the black hole horizon is
almost planar. In this setup we calculate the electromag-
netic field including the radiative terms (Sec. II). Further in
Sec. III, we consider a more realistic model of a neutron star
of finite size and arbitrary inclination of the dipole field
with respect to the rotation axis. In Sec. IV we investigate
the presence and location of the null points of the magnetic
field and discuss the role of parameters of the model.
Results of the analysis are concluded in Sec. V.

II. ROTATING MAGNETIC DIPOLE IN
MINKOWSKI AND RINDLER SPACETIMES

Using the Lorentz gauge, the Maxwell’s equations for the
4-potential Aα in Minkowski spacetime (1.1) are given as

□Aα ¼ 4π

c
Jα; ð2:1Þ
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where the left-hand side contains theD’Alembert operator□
in the flat spacetime, and the right-hand side contains the
source term of the electromagnetic field. Gaussian units are
used in (2.1); however, for the rest of paper we employ
geometric units setting G ¼ c ¼ 1.
The 4-current along the dipole worldline is

Jα ¼ ∇μ

Z
QαμðτÞδð4Þ½xo − xsðτÞ�dτ ð2:2Þ

where τ is the proper time of the dipole source with
spacetime coordinates xs while the observer is located at xo.
The antisymmetric dipole tensor,

QαμðτÞ ¼ Vαpμ − pαVμ þ ϵα μρ σVρmσ; ð2:3Þ
is composed of an electric part pμ and magnetic partmμ, Vμ

is the 4-velocity of the source and ϵ is the Levi-Cività
symbol.
The solution for Aα can be written as [15]

Aα ¼ ∇μ

�
Qα μ

gβγrβVγ

�
�
; ð2:4Þ

where the subscript � denotes the evaluation at retarded time.
Since the source is moving, the observer with the position 3-
vectorX at time T will observe fields generated by the source
in the past. Therefore, we evaluate all quantities at the
retarded time. The retarded time is found as a function of
observer coordinates by imposing the null condition. The
relative distance between an observer and a point on the
trajectory of the source xs ¼ fTs;Xsg is given as

rμ ¼ fr0; rg ¼ fT − Ts;X − XsðTsÞg: ð2:5Þ

The null condition ðrμrμÞ� ¼ 0 at retarded time leads to

ðT − T�Þ2 ¼ ðX − XsðT�ÞÞ2: ð2:6Þ
Electromagnetic tensor Fαβ is given as

Fαβ ¼ ∇αAβ −∇βAα; ð2:7Þ
and electric and magnetic fields as measured by the observer
with 4-velocity uμ are

Eα ¼ Fαμuμ; Bα ¼ 1

2
ϵαμγδFγδuμ: ð2:8Þ

A. Electromagnetic fields in Minkowski spacetime

We consider a constant magnetic dipole embedded in the
ðX; YÞ-plane which is at rest (Vα ¼ fV0; 0; 0; 0g) and
rotates along the Z-axis,

mμ ¼ f0; mx;my; 0g; ð2:9Þ
in which

mx ¼ m cosðωτÞ my ¼ m sinðωτÞ; ð2:10Þ
with ω denoting the angular velocity of magnetic dipole
and m its constant magnitude. Using the above assump-
tions, the 4-potential Aα may be expressed as [15]

Aα ¼ ϵαμρσrμ
�
Vρ _mσ

ðr:VÞ2 −
Vρmσ

ðr:VÞ3
�����

�
; ð2:11Þ

where the “dot” denotes the τ derivative. The electromagnetic field tensor is then

Fαβ ¼ −ϵ½αβ�ρσ
Vρ _mσ

ðr:VÞ2 þ ϵ½αβ�ρσ
Vρmσ

ðr:VÞ3 þ
r½αϵβ�μρσ
ðr:VÞ3 frμVρm̈σ − VμVρ _mσg

−
r½αϵβ�μρσ
ðr:VÞ4 f3rμVρ _mσ − VμVρmσg þ 3

V ½αϵβ�μρσ
ðr:VÞ4 rμVρmσ þ 3

r½αϵβ�μρσ
ðr:VÞ5 rμVρmσ − 2

V½αϵβ�μρσ
ðr:VÞ3 rμVρ _mσ: ð2:12Þ

All the calculations are done at retarded time. We consider the static location of the magnetic dipole on the Z-axis at
Xs ¼ ð0; 0; ZsÞ. From (2.6) we obtain

T� ¼ T − r; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ ðZ − ZsÞ2

q
; ð2:13Þ

where r hereafter denotes the distance from the dipole (not the Schwarzschild radial coordinate). From (2.12) we find the
electric and magnetic fields. The magnetic field components are

BX ¼ FYZj� ¼
2ðr _mx þmxÞ

r3
−
ðr2 − X2Þðr2m̈x þ 3r _mx þ 3mxÞ

r5
þ XYðr2m̈y þ 3r _my þ 3myÞ

r5

����
�
; ð2:14Þ

BY ¼ FZXj� ¼
2ðr _my þmyÞ

r3
−
ðr2 − Y2Þðr2m̈y þ 3r _my þ 3myÞ

r5
þ XYðr2m̈x þ 3r _mx þ 3mxÞ

r5

����
�
; ð2:15Þ

BZ ¼ FXY j� ¼
ðZ − ZsÞ

r5
fr2ðXm̈x þ Ym̈yÞ þ 3ðXmx þ YmyÞþ3rðX _mx þ Y _myÞgj�: ð2:16Þ
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The electric field components are

EX ¼ FXT j� ¼ −
ðZ − ZsÞð _my þ rm̈yÞ

r3

����
�
; ð2:17Þ

EY ¼ FYT j� ¼
ðZ − ZsÞð _mx þ rm̈xÞ

r3

����
�
; ð2:18Þ

EZ ¼ FZT j� ¼
Y _mx − X _my − rðYm̈x − Xm̈yÞ

r3

����
�
: ð2:19Þ

B. Electromagnetic fields in Rindler spacetime

In the previous section we found the electromagnetic
fields in Minkowski spacetime. Since the Rindler observer
represents a particular worldline in the flat spacetime, we
can use the formulas obtained for Minkowski and apply the
coordinate transformation to convert them into Rindler
spacetime.

With the following coordinate transformation,

T¼ zsinhðgHtÞ; X¼ x; Y ¼ y; Z¼ zcoshðgHtÞ;
ð2:20Þ

applied in (1.1) we indeed obtain the Rindler line element
(1.2) with the lapse function given as α ¼ gHz. The
electromagnetic fields in Rindler spacetime (primed) are
thus obtained from the corresponding ones in Minkowski
spacetime (unprimed) as follows:

Eα0 ¼ ∂xα0
∂xα F

αμuRμ ; Bα0 ¼ 1

2

∂xα0
∂xα ϵ

αμγδFγδuRμ ; ð2:21Þ

where uμR denotes the 4-velocity of the Rindler frame with
respect to the Minkowski observer

uμR ¼ fcoshðgHtÞ; 0; 0; sinhðgHtÞg: ð2:22Þ

The resulting electric field is

Ex ¼ − sinhðgHtÞ
�
2ðr _my þmyÞ

r3
−
ðr2 − y2Þðr2m̈y þ 3r _my þ 3myÞ

r5
þ xyðr2m̈x þ 3r _mx þ 3mxÞ

r5

�

− coshðgHtÞ
�ðz coshðgHtÞ − ZsÞð _my þ rm̈yÞ

r3

�
; ð2:23Þ

Ey ¼ sinhðgHtÞ
�
2ðr _mx þmxÞ

r3
−
ðr2 − x2Þðr2m̈x þ 3r _mx þ 3mxÞ

r5
þ xyðr2m̈y þ 3r _my þ 3myÞ

r5

�

þ coshðgHtÞ
�ðz coshðgHtÞ − ZsÞð _mx þ rm̈xÞ

r3

�
; ð2:24Þ

Ez ¼
y _mx − x _my − rðym̈x − xm̈yÞ

r3
: ð2:25Þ

And the magnetic field components are

Bx ¼ coshðgHtÞ
�
2ðr _mx þmxÞ

r3
−
ðr2 − x2Þðr2m̈x þ 3r _mx þ 3mxÞ

r5
þ xyðr2m̈y þ 3r _my þ 3myÞ

r5

�

þ sinhðgHtÞ
�ðz coshðgHtÞ − ZsÞð _mx þ rm̈xÞ

r3

�
; ð2:26Þ

By ¼ coshðgHtÞ
�
2ðr _my þmyÞ

r3
−
ðr2 − y2Þðr2m̈y þ 3r _my þ 3myÞ

r5
þ xyðr2m̈x þ 3r _mx þ 3mxÞ

r5

�

þ sinhðgHtÞ
�ðz coshðgHtÞ − ZsÞð _my þ rm̈yÞ

r3

�
; ð2:27Þ

Bz ¼ ðz coshðgHtÞ − ZsÞ
�
r2ðxm̈x þ ym̈yÞ þ 3ðxmx þ ymyÞ þ 3rðx _mx þ y _myÞ

r5

�
; ð2:28Þ

where the spatial distance from the dipole r is expressed in Rindler coordinates as follows:
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r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz coshðgHtÞ − ZsÞ2

q
; ð2:29Þ

and the retarded proper time is

τ� ¼ z sinhðgHtÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz coshðgHtÞ − ZsÞ2

q
:

ð2:30Þ

Since the magnetic dipole is static in Minkowski spacetime,
the proper retarded time τ� is the same as Minkowski
retarded time T�.
The magnetic field lines are calculated using the Runge-

Kutta method to solve the system of ordinary differential
equations

dr
ds

¼ B
jBj ; ð2:31Þ

where ds is the element of the magnetic field line [16].
In Fig. 1 we compare the structure of the magnetic field

(2.26)–(2.28) in the Minkowski (left panel) and Rindler
(right panel) spacetimes. Time evolution of the field lines in
the latter case is illustrated in Fig. 2 for the two cases, t ¼ 1
(“early time”) and t ¼ 3 (“late time”). In the Minkowski
framewewould obtain a similarly shaped field line as shown
for the Rindler spacetime in the early time (left panel of
Fig. 2). However, as time passes, the structure of field lines in
the Rindler frame evolves and gradually becomes more and
more distorted and compressed due to the presence of the
Rindler horizon as shown in the right panel of Fig. 2.
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FIG. 1. Comparison of the magnetic field lines of a rotating dipole (ω ¼ 1, m ¼ 1) as observed in the inertial reference frame
(gHt ¼ 0, left panel) and in the accelerated Rindler frame (gHt ¼ 1, right panel). The dipole is located at Zs ¼ 1.

FIG. 2. Comparison of two particular magnetic field lines in Rindler spacetime for the early time (s ¼ −1.6891785::30, left panel) and
for the late time (s ¼ −1.871::1.5876863, right panel). Other parameters are set as ω ¼ 10, m ¼ 1, Zs ¼ 1 and gH ¼ 1. The field lines
are constructed with initial values x0 ¼ 0.1, y0 ¼ 0.1 and z0 ¼ 0.4.
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In Fig. 3 we present the section of the electric field
(2.23)–(2.25) in the ðX; ZÞ [ðx; zÞ, respectively] planes in
the Minkowski (left panel, gHt ¼ 0) and Rindler (right
panel, gHt ¼ 1) spacetimes. Corresponding magnetic field
lines (2.26)–(2.28) are compared in Fig. 4. We stress that
these sections do not cover y-components of the fields
which are generally nonzero as can be seen in the 3D view
of magnetic field lines in Fig. 1.

III. ELECTROVACUUM MODEL OF A NEUTRON
STAR MAGNETOSPHERE NEAR SMBH

The electrodynamics of a rotating magnetized neutron
star poses a difficult challenge which is being tackled by
various approaches (see [17] for a recent review of the

topic). The force-free magnetodynamics of a neutron star in
general relativity was previously studied by Komissarov
[18], while the stationary vacuum solutions for electro-
magnetic fields around slowly rotating neutron stars were
discussed in [19,20]. For the purpose of analyzing the
effects of strong gravity onto the electromagnetic fields, the
vacuum models become especially useful as they allow us
to manifest the role of gravitation in the clear form.
Therefore, for the exterior of the neutron star (r > R) we
adopt a model of electrovacuum magnetosphere empty of
any plasma or particles. On the other hand, the interior of a
star (r ≤ R) is supposed to be in a superconducting and
superfluid state.
The magnetosphere is analyzed in the near-horizon limit,

where the spatial curvature may be ignored and the metric
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FIG. 3. Comparison of the electric field lines of a rotating dipole (ω ¼ 1, m ¼ 1) as observed in the inertial reference frame (gHt ¼ 0,
left panel) and in the accelerated Rindler frame (gHt ¼ 1, right panel). The dipole is located at Zs ¼ 1.
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FIG. 4. Comparison of the magnetic field lines of rotating dipole (ω ¼ 1, m ¼ 1) as observed in the inertial reference frame (gHt ¼ 0,
left panel) and in the accelerated Rindler frame (gHt ¼ 1, right panel). The dipole is located at Zs ¼ 1.
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may be approximated by that of Rindler. The electromag-
netic field of a test charge in the near-horizon limit and its
interaction with the horizon were studied in [14]. More
recently, the analytic solution for the magnetic dipole in the
near-horizon limit was considered and the battery effect of
the neutron star orbiting the SMBH was investigated [15].
The authors analyzed the field of the magnetic dipole in
uniform motion along the flat Rindler horizon. Here we
focus on different astrophysically motivated aspects of the
electrodynamics of magnetized stars. In particular, we
consider the rotating magnetic dipole which is arbitrarily
inclined with respect to the rotation axis and study the
structure of the resulting electromagnetic field.
It is well known that the induced electric field due to the

rapid rotation of the magnetic dipole of a neutron star plays

the main role in determining the characteristic of the pulsar
magnetosphere. Because of its rotation, an electromotive
field is induced such that the electric field in the corotating
frame vanishes, E0 ¼ 0 [21,22]. From the transformation
law between an inertial frame and a rotating frame
we get

E0 ¼ Eþ ðω ∧ rÞ ∧ B ð3:1Þ

where r is the position vector and ω the rotation
velocity vector of the star. We assume the presence of a
pointlike magnetic dipole in its center. The external
magnetic field in the quasistatic near zone for distances
much less than the wavelength λ ¼ 2πc=ω in Minkowski
spacetime is [22]

BX ¼ m
r5
½sinðχÞf3X½X cosðωτÞ þ Y sinðωτÞ� − r2 cosðωτÞg þ 3ðZ − ZsÞX cosðχÞ�; ð3:2Þ

BY ¼ m
r5
½sinðχÞf3Y½X cosðωτÞ þ Y sinðωτÞ� − r2 sinðωτÞg þ 3ðZ − ZsÞY cosðχÞ�; ð3:3Þ

BZ ¼ m
r5
½3ðZ − ZsÞ sinðχÞ½X cosðωτÞ þ Y sinðωτÞ� þ cosðχÞð3ðZ − ZsÞ2 − r2Þ�; ð3:4Þ

where the distance r from the source is given in Minkowski coordinates as r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ ðZ − ZsÞ2

p
.

Further we consider a star of radius R rotating along the Z-axis with the inclination angle χ between the rotation axis and
the magnetic moment. The external electric field in vacuum is quadrupolar and its components are

EX ¼ −
mω

r5

�
ðZ − ZsÞ sinðχÞ

�
5XR2

r2
ðX cosðωτÞ þ Y sinðωτÞÞ þ ðr2 − R2Þ cosðωτÞ

�
þ R2X cosðχÞ

�
5ðZ − ZsÞ2

r2
− 1

	�
;

ð3:5Þ

EY ¼ −
mω

r5

�
ðZ − ZsÞ sinðχÞ

�
5YR2

r2
ðX cosðωτÞ þ Y sinðωτÞÞ þ ðr2 − R2Þ sinðωτÞ

�
þ R2Y cosðχÞ

�
5ðZ − ZsÞ2

r2
− 1

	�
;

ð3:6Þ

EZ ¼ mω

r5

�
sinðχÞ

�
r2 þ R2 −

5ðZ − ZsÞ2
r2

�
ðX cosðωτÞ þ Y sinðωτÞÞ þ R2ðZ − ZsÞ cosðχÞ

�
3 −

5ðZ − ZsÞ2
r2

	�
: ð3:7Þ

If we put χ ¼ π
2
, R ¼ 0 (the case without a conductor) and neglect the time derivatives of m (reducing to zero order in

terms ofω), we recover the electromagnetic fields in Minkowski given by (2.14)–(2.16) and (2.17)–(2.19), respectively. The
electric field linear in ω vanishes.
We use the transformation relation fromMinkowski to Rindler coordinates to obtain the electromagnetic fields in Rindler

spacetime. From (2.20), (2.21) and (2.22) we obtain the magnetic field components as

Bx ¼
m
r5

�
coshðgHtÞ½sinðχÞf3x½x cosðωτÞ þ y sinðωτÞ� − r2 cosðωτÞg þ 3ðz coshðgHtÞ − ZsÞx cosðχÞ�

− ω sinhðgHtÞ
�
ðz coshðgHtÞ − ZsÞ sinðχÞ

�
5R2y
r2

ðx cosðωτÞ þ y sinðωτÞÞ þ ðr2 − R2Þ sinðωτÞ
�

þ R2y cosðχÞ
�
5ðz coshðgHtÞ − ZsÞ2

r2
− 1

	��
; ð3:8Þ
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By ¼
m
r5

�
coshðgHtÞ½sinðχÞf3y½x cosðωτÞ þ y sinðωτÞ� − r2 sinðωτÞg þ 3ðz coshðgHtÞ − ZsÞy cosðχÞ�

þ ω sinhðgHtÞ
�
ðz coshðgHtÞ − ZsÞ sinðχÞ

�
5xR2

r2
ðx cosðωτÞ þ y sinðωτÞÞ þ ðr2 − R2Þ cosðωτÞ

�

þ R2x cosðχÞ
�
5ðz coshðgHtÞ − ZsÞ2

r2
− 1

	��
; ð3:9Þ

Bz ¼
m
r5
½3ðz coshðgHtÞ − ZsÞ sinðχÞ½x cosðωτÞ þ y sinðωτÞ� þ cosðχÞð3ðz coshðgHtÞ − ZsÞ2 − r2Þ�; ð3:10Þ

where τ is defined by Eq. (2.30). The electric field components are

Ex ¼ −
m
r5

�
ω coshðgHtÞ

�
ðz coshðgHtÞ − ZsÞ sinðχÞ

�
5R2x
r2

ðx cosðωτÞ þ y sinðωτÞÞ þ ðr2 − R2Þ cosðωτÞ
�

þ R2x cosðχÞ
�
5ðz coshðgHtÞ − ZsÞ2

r2
− 1

	�
þ sinhðgHtÞ½sinðχÞf3y½x cosðωτÞ þ y sinðωτÞ� − r2 sinðωτÞg

þ 3ðz coshðgHtÞ − ZsÞy cosðχÞ�g; ð3:11Þ

Ey ¼ −
m
r5

�
ω coshðgHtÞ

�
ðz coshðgHtÞ − ZsÞ sinðχÞ

�
5R2y
r2

ðx cosðωτÞ þ y sinðωτÞÞ þ ðr2 − R2Þ sinðωτÞ
�

þ R2y cosðχÞ
�
5ðz coshðgHtÞ − ZsÞ2

r2
− 1

	�
− sinhðgHtÞ½sinðχÞf3x½x cosðωτÞ þ y sinðωτÞ� − r2 cosðωτÞg

þ 3ðz coshðgHtÞ − ZsÞx cosðχÞ�
�
; ð3:12Þ

Ez ¼
m
r5
½3ðz coshðgHtÞ − ZsÞ sinðχÞ½x cosðωτÞ þ y sinðωτÞ� þ cosðχÞð3ðz coshðgHtÞ − ZsÞ2 − r2Þ�: ð3:13Þ

IV. MAGNETIC NULL POINTS

The formation of magnetic null points (NPs) where all the
components of themagnetic inductionvector simultaneously
vanish, i.e., B ¼ ðBx; By; BzÞ ¼ ð0; 0; 0Þ within the mag-
netosphere of amagnetic star, is an astrophysically important
effect. Structure of the magnetic field lines around a NP is
relevant for the processes of magnetic reconnection occur-
ring in the presence of astrophysical plasma. Therefore we
investigate whether the employed model of the magneto-
sphere supports the formation of NPs and how their presence
and location depend on the parameters of the model.

A. Analytical method

First we try to locate magnetic NPs analytically using
some further assumptions to simplify long mathematical
expressions. From (3.10) we get

Bz ¼
m
r5
½3zR sinðχÞ½x cosðωτÞ þ y sinðωτÞ�

þ cosðχÞð3z2R − r2Þ� ¼ 0; ð4:1Þ
where zR ¼ z coshðgHtÞ − Zs and r ≠ 0.
From the above equation we obtain the following relation:

tanðχÞ ¼ r2 − 3z2R
3zR½x cosðωτÞ þ y sinðωτÞ� : ð4:2Þ

Let us consider the axisymmetric case where the rota-
tional axis and magnetic moment of the star have parallel
orientation along the z-axis, i.e., χ ¼ 0, which gives

x2 þ y2 − 2z2R ¼ 0: ð4:3Þ
Imposing this constrain in Bx ¼ 0 and By ¼ 0, we obtain

x ¼ 0; y ¼ 0; ð4:4Þ
and from (4.3) we get zR ¼ 0, resulting in r ¼ 0, which
means that in this case we have no magnetic NP with
astrophysical significance. If we perform an analogical
procedure for χ ¼ π=2, we obtain the same result. Thus for
χ ¼ 0, π=2 we have no NPs at finite r outside r ¼ 0.
Apparently, the inclination angle χ plays a key role in the
discussion of NPs. However, for arbitrary χ, the expressions
become too complicated for the analytic treatment and
therefore we proceed numerically.

B. Numerical method

Since we could not locate the NPs analytically in the
general case, we switch to the numerical approach. The
iterative root-finding method is used to search the relevant
portion of the magnetosphere for the presence of NPs and
to find their location with sufficient precision.
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We eventually confirm that NPs may develop in the
employed model of the magnetosphere. The acceleration of
the Rindler frame, which represents the gravitational pull of
the nearby SMBH, appears crucial for the formation of NPs
which are actually not allowed in the Minkowskian limit
(gH ¼ 0). We observe that magnetic nulls only emerge for
the inclinations χ ≠ 0, π=2 which confirms previous
analytical results. Rotation of the inclined dipole is also
essential for the formation of the NPs; none of them is
found if the rotation stops (ω ¼ 0). Necessary conditions
for the existence of the magnetic nulls in the given setup are
thus (i) acceleration (gH > 0); (ii) inclination of the dipole
χ ≠ 0, π=2; and (iii) rotation of the dipole ω > 0.
In Fig. 5 we present a 3D view of a typical structure of

magnetic field lines in the vicinity of the NP located for
χ ¼ π=4, Zs ¼ 1, gH ¼ 1, t ¼ 1, ω ¼ 1 and R ¼ 0. Two-
dimensional sections of the same field structure in the
planes ðx; yÞ; ðx; zÞ; and ðy; zÞ are shown in Fig. 6 and the

corresponding isocontours of the magnetic field strength
B ¼ ðB2

x þ B2
y þ B2

zÞ1=2 are shown in Fig. 7.
For the rest of the analysis we do not restrict ourselves to

z-values corresponding to the vicinity of the horizon. We
explore the behavior of the field in the larger domain and
extend the search of NPs to regions where the Rindler
metric does not necessarily approximate the Schwarzschild
geometry.
In the following we discuss the effect of the Rindler

coordinate time t which fundamentally affects the structure
of the magnetic field and as a result it also impacts the
formation of the NPs. For several values of the inclination
angle χ we vary the coordinate time t and seek for the NP
while other parameters remain fixed as ω ¼ 1, Zs ¼ 1,
gH ¼ 1 and R ¼ 0. In Fig. 8 we plot the NP’s distance from
the dipole r as a function of t. For a small t the NPs
generally emerge far away from the dipole; then they
become closer and the distance remains almost constant for
some period of time after which the NPs vanish. This
period decreases as the inclination grows; i.e., higher
inclination makes the NP vanish earlier. Increasing the
inclination we observe that the distance between the dipole
and NP decreases until the value χ ¼ π=4 is reached. For
higher inclinations this trend inverts and the distance starts
to grow. Moreover, we observe that the curve for χ ¼ 3π=8
coincides with the one for χ ¼ π=8 and similarly the curves
for χ ¼ 7π=16 and χ ¼ π=16 coincide, which suggests that
the distance of NPs follows some kind of symmetry around
χ ¼ π=4. For all tested values of χ we were able to locate
null points also in the close vicinity of the horizon
(with z < 1) where Rindler spacetime faithfully approx-
imates the Schwarzschild metric.
Location of the subset of NPs presented in Fig. 8 is shown

in a 3D view in Fig. 9. This shows that the above-mentioned
symmetry only appears whenwe discuss the distance r of the
NPs,while their actual locations differ. Rotation of the dipole
is parametrized by the proper time τ with the frequency ω.
The resulting electromagnetic field is τ-periodic with the
period 2π=ω. However, as t increases, the distance of the NP
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FIG. 5. Structure of the magnetic field lines in the vicinity of the
null point (red mark) located at x0 ¼ 0.39, y0 ¼ 5.86 and
z0 ¼ 2.35. The following values of parameters are set: Zs ¼ 1,
gH ¼ 1, ω ¼ 1, χ ¼ π=4, R ¼ 0 and t ¼ 1.
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and z0 ¼ 2.35. The same values of parameters as in Fig. 5 are used.
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from the dipole generally decreases as shown in Fig. 8.
Combined with the simultaneous evolution of the proper
time τ, the location of the NP follows a helical trajectory with
decreasing radius as t grows (Fig. 9).
So far, we have considered the medium as nonconduct-

ing, i.e., the radius of the conducting zone was set as R ¼ 0
in the discussion. The effect of conductivity on the structure
of the field is important and the formation of the NPs is also
strongly affected when R > 0 is considered. In Fig. 10 we
plot the distance of the NPs from the dipole as a function of
R. At first the distance of the NPs slightly decreases as R
rises. The drop is almost negligible for small inclinations;
however, for more inclined dipoles it becomes evident.
Nevertheless, as R further rises it starts to push NPs farther
from the source and the boundary of the neutron star (black
dashed line in Fig. 10). We observe that in the case of
inclinations χ > π=4 the NPs may get very close to the
surface of the star as R increases. Nevertheless, they never
cross it, which suggests that in a given model the NPs
cannot form within the superconducting interior of the
neutron star.
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V. CONCLUSIONS AND FINAL REMARKS

In this paper we studied a simplified vacuum model of a
magnetosphere of a rapidly rotating neutron star (or mag-
netar) near a supermassive black hole represented by an
inclined rotatingmagnetic dipole in the reference frame of an
accelerated observer (Rindler spacetime). We investigated
the structure of the electromagnetic field and, in particular,
we focused on the formation of magnetic null points as a
remarkable feature of the field topology with important
consequences for the dynamics of astrophysical plasma.
We observed that magnetic null points may emerge in a

given setup. The null points develop only if the inclination
angle χ ≠ 0, π=2 (i.e., in the axisymmetric case the NPs do
not appear). Rotation of the dipole and the acceleration of the
observer are both necessary for the formation of NPs. We
have numerically located theNPs for different values of χ and
discussed their location as a function of coordinate time t and
radius of the conductor R. We conclude that NPs only form
for some period of coordinate time t and that they are always
located outside the conducting region of a magnetic star.
Previously,wehave also studied the formationofmagnetic

NPs in the curved spacetime of a rotating Kerr black hole
[2,3,23]. Namely, we investigated the near-horizon structure
of an asymptotically uniform magnetic field (aligned or
inclined with respect to the axis of rotation). The black hole
was supposed to drift through the fieldwith constant velocity.
In the resulting field measured by a zero angular momentum
observer (ZAMO) comoving with the black hole, the null
points of the magnetic field developed only for nonzero
values of spin and for sufficiently high drift velocity.
Moreover, the nonaxisymmetry was also necessary for the
formation of NPs (i.e., no NPs were found for the casewhere
the spin, the magnetic field and the boost direction were all
aligned). Comparing these resultswith the present discussion
of NPs in the flat spacetime, we confirm the essential role of
rotation and nonaxisymmetry. However, the fundamental
effect of frame-dragging, which was necessary for the
formation of NPs near the Kerr black hole, does not operate

in the flat spacetime. Nevertheless, the acceleration of the
Rindler observer is able to mimic this effect of curved
spacetime and supports the formation ofmagnetic null points
even in the case of flat spacetime.
The analyzed model does not aim to provide a realistic

description of the magnetosphere of a neutron star in which
the role of charged matter and currents cannot be neglected.
Nevertheless, we were basically interested in the gravita-
tional effects on the structure of the electromagnetic fields
and therefore we considered an electrovacuum solution. In
our previous papers [2,3], we have shown that the curved
geometry of a rotating black hole may lead to the formation
of X-type null points in the asymptotically uniform vacuum
magnetic field. Here we raised and answered the question
of whether and under which circumstances the null points
could appear even without curvature in the flat Rindler
spacetime approximating the Schwarzschild geometry
close to the horizon of the static black hole.
Although the full description of the astrophysical process

of magnetic reconnection is obviously beyond the scope of
a vacuum model, we suggest that strong gravity effects
analyzed in this paper might support the reconnection
process as they entangle the field lines in a suitable way. We
show that gravitation in an electrovacuum field may even
create such a field topology which corresponds to the
magnetic reconnection operating in the presence of charges
and currents. These results are mostly of a theoretical
interest and cannot be directly applied for the description of
actual magnetospheres. Nevertheless, they clearly illustrate
the complexity of relativistic effects which are relevant for
the physics of compact objects.
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